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Module 1

Objectives:
Finite-state machines
Synchronous languages
State Charts
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Models of computation

 Data-flow oriented models
 Focus on computation
 Data-flow graphs and derivatives

 Control-flow oriented models
 Focus on control
 Based on finite-state machine models

 DF and CF model complementary aspects
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Formal FSM model

 A set of primary inputs patterns X
 A set of primary outputs patterns Y
 A set of states S
 A state transition function:

 δ: X × S → S
 An output function:

 λ : X × S → Y for Mealy models
 λ : S → Y        for Moore models
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Finite-state machines

 A finite-state machine is an abstraction
 Computation takes no time

 Outputs are available as soon as inputs are
 A finite-state machine implementation is a sequential 

circuit with a finite cycle-time
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State diagrams

Directed graph
Vertices = states
Edges = transitions

Equivalent to state transition tables
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Example
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Example
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Example
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FSM-based models

Synchronous languages:
Esterel, Argos, Lustre, SDL

Graphical formalisms:
FSMs, hierarchical FSMs, concurrent FSMs
StateCharts
Program-state machines
SpecCharts
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State Charts

Proposed by Harel

Graphic formalism to specify FSMs with:
Hierarchy
Concurrency
Communication

Tools for simulation, animation and synthesis
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State Charts

States

Transitions

Hierarchy
OR (sequential) decomposition

 State → a sequence of states

AND (concurrent) decomposition
 State → a set of concurrent states
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State charts
Top_level_uart

empty loaded

load_thr / load:=1;
tx_hold_reg;=data_in;

rd(tx_hold_reg)/load:=0

transmitter

idle transmit

csr(2)=0

csr(2)=1
tx_mode

empty loaded

[read_enable=1] /
filoful:=1

read_fifo_cmd/filoful:=0

receiver

idle receive

csr(3)=0

csr(3)=1
rx_mode

normal_tx_rx echo_active
uart_mode [csr(2..3)=’11’]

[csr(2..3)=’11’]
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State Charts
Additional features

 State transitions across multiple levels

 Timeouts:
 Notation on transition arcs denoting the max/min time in a given state

 Communication:
 Broadcast mechanism based on event generation and reception

 History feature:
 Keep track of visited states
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StateCharts

Advantages:
Formal basis
Easy to learn
Support of hierarchy, concurrency and exceptions

 Avoid exponential blow up of states

Disadvantages:
No description of data-flow computation
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Program State Machines

 Combining FSM formalism with program execution

 In each state a specific program is active

 Hierarchy:
 Sequential states
 Concurrent states

 In a hierarchical state, several programs may be active
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SpecCharts

 Based on Program State Machines
 Introduced by Gajski et al.

 Extension of VHDL:
 Compilable into VHDL for simulation and synthesis
 Behavioral hierarchy

 Combining FSM and VHDL formalisms
 Leaves of the hierarchy are VHDL models
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Example

 TOC: e2, e3

 TI: e1

E
B

X Y Z

x1

x2

z1

z2

e1

e2

e4

e5

type int_array is array(natural range<>) of integer;
signal A: int_array( 15 downto 0 );

variable i, max:integer;

max-0;

for i=1 to 20 do

     if (A[i] > max) then

     max = A[i];

     end if;

end for

port P,Q: in integer;

e3
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State transitions

 Sequencing between sub-behaviors are controlled by 
transition arcs
TOC - Transition on completion

 Program terminates AND transition condition is true

TI -  Transition immediate
 Transition condition is true

 A transition arc is labeled by a triple:
 (transition type, triggering event, next behavior)
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SpecCharts semantics

 Timing semantics similar to VHDL
 Synchronization:

 Use wait statement

 Use TOC looping back to the top of the program 
 Communication:

 Using variables and signals
 Message passing (send/receive)

Simulation;
Model can be flattened to VHDL
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Module 2

Objectives:
Expression-based formalisms
Control-flow expressions
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Expression-based formalisms

Represent sequential behavior by expressions

Advantages:
Symbolic manipulation
Translation into FSM models

Disadvantages:
Loss of data-flow information
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Control-flow expression formalism 

 Expressions capturing a high-level view of control-flow 

while abstracting data-flow information

 Expressions are extracted directly from HDL or 
programming language specifications

 Cycle-based semantics provides a formal interpretation 
of HDLs

 Based on the algebra of synchronous processes 

(Process Algebra)
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Control-Flow Expressions
Composition

Sequential

Parallel

Alternative

Loop

Infinite

HDL CFE

begin P; Q end
fork P; Q join

if (c)
P ;

Q ;
else

while (c)
P ;

P ;
wait (!c)

always
P ;

p · q

p װ q

c : p + c : q

(c: p)*

(c: 0)* .p

pω
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Example of design problem
Ethernet controller

Problem
Avoid bus conflicts

System Bus

DMA-RCVD

DMA-FRAME DMA-BUFFER DMA-BIT

DMA-XMIT XMIT-FRAME XMIT-BIT

ENQUEUE EXEC-UNIT

Receive Unit

Transmit Unit

Execute Unit

Network 
Coprocessor

Host CPU

Memory

RXD
RXE

TXD
TXE

CRS
CDT
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P2 P3

MEMORY

always

begin

   write bus

   receive data

end

always

begin

   initialize

   wait ( tr ready )

   read bus

end

always

begin

   wait ( free bus )

   read bus

end

p = p1 װ p2 װ p3

 p1 = [a.0]ω

 p2 = [0.(c:0)*.a]ω

 p3 = [(x:0)*.a]ω

Example of design problem
Ethernet controller

P1
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 Never access the bus twice simultaneously

Example 
 Control-Flow Expressions

P2 P3

MEMORY

always

begin

   write bus

   receive data

end

always

begin

   initialize

   wait ( tr ready )

   read bus

end

always

begin

   wait ( free bus )

   read bus

end

p = p1 װ p2 װ p3

        p1 = [a.0]ω

        p2 = [0.(c:0)*.a]ω

        p3 = [(x:0)*.a]ω

        NEVER = {a,a}  

P1
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Example
Synchronization

 Synchronization between a sender and a receiver in a 
blocking protocol
 Sender = (x : r)*.a
 Receiver = (y : k)*.a
 ALWAYS = {{a; a}}
 NEVER = {{r; k}}

r k

aa

RECEIVERSENDER
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Design with CFEs
 Representation:

 A CFE can be compiled into a specification automaton

 Representing all feasible behaviors
 Synthesis:

 A control-unit implementation is a FSM
 Derivable from a specification automaton by assigning values 

to decision variables over time
 Optimization:

 Minimize a cost function defined over the decision variables
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CFE Summary

Control-flow expression are a modeling tool
Formal semantic:

Support for synthesis and verification

Synthesis path from CFEs to control-unit


