
FSM-based Specification Formalisms

Giovanni De Micheli
Integrated Systems Laboratory

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed
© Giovanni De Micheli – All rights reserved

(c) Giovanni De Micheli 2

Module 1

Objectives:
Finite-state machines
Synchronous languages
State Charts

(c) Giovanni De Micheli 3

Models of computation

 Data-flow oriented models
 Focus on computation
 Data-flow graphs and derivatives

 Control-flow oriented models
 Focus on control
 Based on finite-state machine models

 DF and CF model complementary aspects

(c) Giovanni De Micheli 4

Formal FSM model

 A set of primary inputs patterns X
 A set of primary outputs patterns Y
 A set of states S
 A state transition function:

 δ: X × S → S
 An output function:

 λ : X × S → Y for Mealy models
 λ : S → Y for Moore models

(c) Giovanni De Micheli 5

Finite-state machines

 A finite-state machine is an abstraction
 Computation takes no time

 Outputs are available as soon as inputs are
 A finite-state machine implementation is a sequential

circuit with a finite cycle-time

REGISTERS

COMBINATIONAL
CIRCUIT

Primary
Inputs

Primary
Outputs

clock

(c) Giovanni De Micheli 6

State diagrams

Directed graph
Vertices = states
Edges = transitions

Equivalent to state transition tables

(c) Giovanni De Micheli 7

Example

(c) Giovanni De Micheli 8

Example

(c) Giovanni De Micheli 9

Example

s1 s2

s0

s3

r/0

r/0

r’/1

r/0

ab’r’/0 a’br’/0

abr’/1

ar’/1

a’r’/0b’r’/0

br’/1

a’b’ + r/0

(c) Giovanni De Micheli 10

FSM-based models

Synchronous languages:
Esterel, Argos, Lustre, SDL

Graphical formalisms:
FSMs, hierarchical FSMs, concurrent FSMs
StateCharts
Program-state machines
SpecCharts

(c) Giovanni De Micheli 11

State Charts

Proposed by Harel

Graphic formalism to specify FSMs with:
Hierarchy
Concurrency
Communication

Tools for simulation, animation and synthesis

(c) Giovanni De Micheli 12

State Charts

States

Transitions

Hierarchy
OR (sequential) decomposition

 State → a sequence of states

AND (concurrent) decomposition
 State → a set of concurrent states

(c) Giovanni De Micheli 13

State charts
Top_level_uart

empty loaded

load_thr / load:=1;
tx_hold_reg;=data_in;

rd(tx_hold_reg)/load:=0

transmitter

idle transmit

csr(2)=0

csr(2)=1
tx_mode

empty loaded

[read_enable=1] /
filoful:=1

read_fifo_cmd/filoful:=0

receiver

idle receive

csr(3)=0

csr(3)=1
rx_mode

normal_tx_rx echo_active
uart_mode [csr(2..3)=’11’]

[csr(2..3)=’11’]

(c) Giovanni De Micheli 14

State Charts
Additional features

 State transitions across multiple levels

 Timeouts:
 Notation on transition arcs denoting the max/min time in a given state

 Communication:
 Broadcast mechanism based on event generation and reception

 History feature:
 Keep track of visited states

(c) Giovanni De Micheli 15

StateCharts

Advantages:
Formal basis
Easy to learn
Support of hierarchy, concurrency and exceptions

 Avoid exponential blow up of states

Disadvantages:
No description of data-flow computation

(c) Giovanni De Micheli 16

Program State Machines

 Combining FSM formalism with program execution

 In each state a specific program is active

 Hierarchy:
 Sequential states
 Concurrent states

 In a hierarchical state, several programs may be active

(c) Giovanni De Micheli 17

SpecCharts

 Based on Program State Machines
 Introduced by Gajski et al.

 Extension of VHDL:
 Compilable into VHDL for simulation and synthesis
 Behavioral hierarchy

 Combining FSM and VHDL formalisms
 Leaves of the hierarchy are VHDL models

(c) Giovanni De Micheli 18

Example

 TOC: e2, e3

 TI: e1

E
B

X Y Z

x1

x2

z1

z2

e1

e2

e4

e5

type int_array is array(natural range<>) of integer;
signal A: int_array(15 downto 0);

variable i, max:integer;

max-0;

for i=1 to 20 do

 if (A[i] > max) then

 max = A[i];

 end if;

end for

port P,Q: in integer;

e3

(c) Giovanni De Micheli 19

State transitions

 Sequencing between sub-behaviors are controlled by
transition arcs
TOC - Transition on completion

 Program terminates AND transition condition is true

TI - Transition immediate
 Transition condition is true

 A transition arc is labeled by a triple:
 (transition type, triggering event, next behavior)

(c) Giovanni De Micheli 20

SpecCharts semantics

 Timing semantics similar to VHDL
 Synchronization:

 Use wait statement

 Use TOC looping back to the top of the program
 Communication:

 Using variables and signals
 Message passing (send/receive)

Simulation;
Model can be flattened to VHDL

(c) Giovanni De Micheli 21

Module 2

Objectives:
Expression-based formalisms
Control-flow expressions

(c) Giovanni De Micheli 22

Expression-based formalisms

Represent sequential behavior by expressions

Advantages:
Symbolic manipulation
Translation into FSM models

Disadvantages:
Loss of data-flow information

(c) Giovanni De Micheli 23

Control-flow expression formalism

 Expressions capturing a high-level view of control-flow

while abstracting data-flow information

 Expressions are extracted directly from HDL or
programming language specifications

 Cycle-based semantics provides a formal interpretation
of HDLs

 Based on the algebra of synchronous processes

(Process Algebra)

(c) Giovanni De Micheli 24

Control-Flow Expressions
Composition

Sequential

Parallel

Alternative

Loop

Infinite

HDL CFE

begin P; Q end
fork P; Q join

if (c)
P ;

Q ;
else

while (c)
P ;

P ;
wait (!c)

always
P ;

p · q

p װ q

c : p + c : q

(c: p)*

(c: 0)* .p

pω

(c) Giovanni De Micheli 25

Example of design problem
Ethernet controller

Problem
Avoid bus conflicts

System Bus

DMA-RCVD

DMA-FRAME DMA-BUFFER DMA-BIT

DMA-XMIT XMIT-FRAME XMIT-BIT

ENQUEUE EXEC-UNIT

Receive Unit

Transmit Unit

Execute Unit

Network
Coprocessor

Host CPU

Memory

RXD
RXE

TXD
TXE

CRS
CDT

(c) Giovanni De Micheli 26

P2 P3

MEMORY

always

begin

 write bus

 receive data

end

always

begin

 initialize

 wait (tr ready)

 read bus

end

always

begin

 wait (free bus)

 read bus

end

p = p1 װ p2 װ p3

 p1 = [a.0]ω

 p2 = [0.(c:0)*.a]ω

 p3 = [(x:0)*.a]ω

Example of design problem
Ethernet controller

P1

(c) Giovanni De Micheli 27

 Never access the bus twice simultaneously

Example
 Control-Flow Expressions

P2 P3

MEMORY

always

begin

 write bus

 receive data

end

always

begin

 initialize

 wait (tr ready)

 read bus

end

always

begin

 wait (free bus)

 read bus

end

p = p1 װ p2 װ p3

 p1 = [a.0]ω

 p2 = [0.(c:0)*.a]ω

 p3 = [(x:0)*.a]ω

 NEVER = {a,a}

P1

(c) Giovanni De Micheli 28

Example
Synchronization

 Synchronization between a sender and a receiver in a
blocking protocol
 Sender = (x : r)*.a
 Receiver = (y : k)*.a
 ALWAYS = {{a; a}}
 NEVER = {{r; k}}

r k

aa

RECEIVERSENDER

(c) Giovanni De Micheli 29

Design with CFEs
 Representation:

 A CFE can be compiled into a specification automaton

 Representing all feasible behaviors
 Synthesis:

 A control-unit implementation is a FSM
 Derivable from a specification automaton by assigning values

to decision variables over time
 Optimization:

 Minimize a cost function defined over the decision variables

(c) Giovanni De Micheli 30

CFE Summary

Control-flow expression are a modeling tool
Formal semantic:

Support for synthesis and verification

Synthesis path from CFEs to control-unit

