FSM-based Specification Formalisms

Giovanni De Micheli
Integrated Systems Laboratory

m
T
"1
=

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli - All rights reserved



Module 1

¢ Objectives:

AFinite-state machines
A Synchronous languages
A State Charts

(c) Giovanni De Micheli



Models of computation

¢ Data-flow oriented models
A Focus on computation

A Data-flow graphs and derivatives

¢ Control-flow oriented models
A Focus on control

A Based on finite-state machine models

¢ DF and CF model complementary aspects

(c) Giovanni De Micheli



Formal FSM model

¢ A set of primary inputs patterns X
¢ A set of primary outputs patterns Y
¢ A set of states S

¢ A state transition function:
AO:XXS—>S

¢ An output function:

AAN:X X S—Y for Mealy models
AAN:S>Y for Moore models

(c) Giovanni De Micheli



Finite-state machines

— Primary
Outputs

Primary —

COMBINATIONAL
Inputs

CIRCUIT

REGISTERS|
T clock

¢ A finite-state machine is an abstraction

¢ Computation takes no time
A Outputs are available as soon as inputs are

¢ A finite-state machine implementation is a sequential
circuit with a finite cycle-time

(c) Giovanni De Micheli




State diagrams

¢ Directed graph

A\Vertices = states

A Edges = transitions

¢ Equivalent to state transition tables

(c) Giovanni De Micheli



Example

INPUT | STATE | N-STATE | OUTPUT
0 S1 $3 1
1 $1 S5 1
0 $2 $3 1
1 $2 S5 1
0 53 59 0
1 53 51 1
0 Sa sS4 0
1 S4 S5 1
0 S5 S4 1
1 S5 $1 O

(c) Giovanni De Micheli




Example

(c) Giovanni De Micheli



b'r/

(c) Giovanni De Micheli



FSM-based models

¢ Synchronous languages:
AEsterel, Argos, Lustre, SDL

¢ Graphical formalisms:

A FSMs, hierarchical FSMs, concurrent FSMs
A StateCharts
A Program-state machines

A SpecCharts

(c) Giovanni De Micheli

10



State Charts

¢ Proposed by Harel

¢ Graphic formalism to specify FSMs with:

AHierarchy
A Concurrency

A Communication

¢ Tools for simulation, animation and synthesis

(c) Giovanni De Micheli

11



State Charts

¢ States
¢ Transitions

¢ Hierarchy

A OR (sequential) decomposition

v State — a sequence of states

AAND (concurrent) decomposition

v State — a set of concurrent states

(c) Giovanni De Micheli

12



Top level

State charts

uart

transmitter

receiver

N

tx_mode
csr(2)=1

idle Utransmit

rx_mode

rd(tx_hold_reg)/load:=0

idle Oreceive

load_thr / load:=1;

[read_enable=1]/

tx_hold_reg;=data_in; \ filoful:=1
empty loaded empty O loaded

uart_mode

read_fifo_cmd/filoful:=0

[csr(2..3)="11"]

normal_tx_rx Q echo_active

(c) Giovank-Be-Mtehet

[csr(2..3)="11"]

13



State Charts
Additional features

¢ State transitions across multiple levels

¢ Timeouts:

A Notation on transition arcs denoting the max/min time in a given state

¢ Communication:

A Broadcast mechanism based on event generation and reception

¢ History feature:

A Keep track of visited states

(c) Giovanni De Micheli

14



StateCharts

¢ Advantages:

A Formal basis
AEasy to learn

A Support of hierarchy, concurrency and exceptions
v Avoid exponential blow up of states

¢ Disadvantages:

A No description of data-flow computation

(c) Giovanni De Micheli

15



Program State Machines

¢ Combining FSM formalism with program execution
¢ In each state a specific program is active

¢ Hierarchy:

A Sequential states

A Concurrent states

¢ In a hierarchical state, several programs may be active

(c) Giovanni De Micheli

16



SpecCharts

¢ Based on Program State Machines
A Introduced by Gajski et al.

¢ Extension of VHDL.:

A Compilable into VHDL for simulation and synthesis
A Behavioral hierarchy

¢ Combining FSM and VHDL formalisms

A Leaves of the hierarchy are VHDL models

(c) Giovanni De Micheli

17



Example

E port P,Q: in integer;
B type int_array is array(natural range<>) of integer;
signal A: int_array( 15 downto 0 );
X | % |
I I
l | variable i, max:integer; | l
x1 | ax0: | 21
| ’ | l
i for i=1 to 20 do i
e’ | if (A[i] > max) then | e4
A 4 A 4
X2 i max = A[i; i 22
| .. |
* i end if; i !
e? i i end for i o5 i
m \;ﬁ?’) |
¢ TOC: e2, e3
¢ Tl:e1

(c) Giovanni De Micheli

18



State transitions

¢ Sequencing between sub-behaviors are controlled by
transition arcs

A TOC - Transition on completion
v Program terminates AND transition condition is true

ATl - Transition immediate

v Transition condition is true

¢ A transition arc is labeled by a triple:

A (transition type, triggering event, next behavior)

(c) Giovanni De Micheli

19



SpecCharts semantics

¢ Timing semantics similar to VHDL

¢ Synchronization:

A Use wait statement

A Use TOC looping back to the top of the program
¢ Communication:

A Using variables and signals

A Message passing (send/receive)

¢ Simulation;
AModel can be flattened to VHDL

(c) Giovanni De Micheli

20



Module 2

¢ Objectives:

A Expression-based formalisms

A Control-flow expressions

(c) Giovanni De Micheli

21



Expression-based formalisms

¢ Represent sequential behavior by expressions

¢ Advantages:

A Symbolic manipulation

ATranslation into FSM models

¢ Disadvantages:

A Loss of data-flow information

(c) Giovanni De Micheli

22



Control-flow expression formalism

¢ Expressions capturing a high-level view of control-flow
while abstracting data-flow information

¢ Expressions are extracted directly from HDL or
programming language specifications

¢ Cycle-based semantics provides a formal interpretation
of HDLs

¢ Based on the algebra of synchronous processes
(Process Algebra)

(c) Giovanni De Micheli

23



Control-Flow Expressions

Composition HDL CFE
Sequential begin P; Q end D-Q
Parallel fork P; Q join plIlq
if (c)
P _
Alternative else c:ptc:q
Q;
while (c .
be (c: p)
Loop ,
wait ('C) (C: 0)* D
P
always .
Infinite b Y

(c) Giovanni De Micheli

24



Example of design problem
Ethernet controller

A
Receive Unit
DMA-RCVD
)
P R < RXE
Host CPU [T i DMA-FRAME |« DMA-BUFFER |« DMA-BIT P RXD
C__—__—__ e ]
i
B R l > TXD
DMA-XMIT : » XMIT-FRAME » XMIT-BIT > TXE
—. | = J___—__ |
Memory < > : Transmit Unit
' < CRS
ENQUEUE | —» » EXEC-UNIT < cDT
Execute Unit
Network
System Bus Coprocessor
A\ 4
A Avoid bus conflicts
(c) Giovanni De Micheli 25



Example of design problem

Ethernet controller

MEMORY
A
< A 4 >
- A A A v
\ 4 \ 4
P1 P2 P3
always always always
begin begin begin
write bus initialize wait ( free bus
receive dat wait ( tr ready ) read bus
end read bus end
end

(c) Giovanni De Micheli

p=p1up2np3
p1=[a.0]»

p2 = [0.(c:0)*.a]¥
p3 = [(x:0)*.a]®

26



Example
Control-Flow Expressions

MEMORY

A

A 4

I A A
A 4 A 4

A
v

P1 P2 P3
always always always
begin begin begin
write bus initialize wait ( free bus )
receive data wait ( tr ready ) read bus
end read bus end
end
p=p1up2unp3
p1=[a.0]»

p2 =[0.(c:0)*.a]w
p3 = [(x:0)*.a]w
NEVER = {a,a}

¢ Never access the bus twice simultaneously

(c) Giovanni De Micheli 27



Example
Synchronization

SENDER RECEIVER

¢ Synchronization between a sender and a receiver in a
blocking protocol

A Sender=(x:r)*.a

A Receiver =(y: k)*.a
A ALWAYS = {{a; a}}
A NEVER = {{r; k}}

(c) Giovanni De Micheli

28



Design with CFEs

¢ Representation:
A A CFE can be compiled into a specification automaton
A Representing all feasible behaviors

¢ Synthesis:
A A control-unit implementation is a FSM

A Derivable from a specification automaton by assigning values
to decision variables over time

¢ Optimization:
A Minimize a cost function defined over the decision variables

(c) Giovanni De Micheli 29



CFE Summary

¢ Control-flow expression are a modeling tool

¢ Formal semantic:

A Support for synthesis and verification

# Synthesis path from CFEs to control-unit

(c) Giovanni De Micheli

30



